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0. DEFINITION OF PREDICTION



1. UNDERLYING PHILOSOPHY 
OF THE COURSE

Predictive inference (Geisser 1993) 
"Clearly hypothesis testing and estimation as stressed in almost all statistics 

books involve parameters...this presumes the truth of the model and imparts an 
inappropriate existential meaning to an index or parameter...inferring about 
observables is more pertinent since they can occur and be validated to a 

degree that is not possible for parameters". 

-Bayesian methods: important role in machine learning. 
-Bayes theorem: provides predictive distribution automatically.
-Has not been appreciated in full yet in whole-genome prediction literature. 
-This distribution, however, is based on a model. There is model uncertainty
-Impossible to arrive at a model that can be taken seriously, at least 
mechanistically, for any complex trait… 
-We will argue later why this is the case, at least partially!



2. TOPICS COVERED (ORDER MAY VARY)



TEXTS THAT MAY BE 
USEFUL AS SUPPORTING 

MATERIALS
FOR THIS COURSE
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Gelman A., Carlin, J. B., Stern, H. and Rubin, D. B. 1995. Chapman&Hall/CRC

Gelman A., Carlin, J. B., Stern, H., Dunson D. V.; Vethari A; Rubin, D. B. 2013. 
Chapman&Hall/CRC



Sorensen, D. and Gianola, D. 2002. Springer

Carlin, B. P. and Louis, T. A. 2008. 
Bayesian Methods for Data Analysis, 
Third Edition Chapman & Hall/CRC



Albert, J. 2009. Bayesian Computation with R. Second Edition

Robert C. P; Casella G. 2010. 
Introducing Monte Carlo Methods with R. 
Springer.



SOME NEW DEVELOPMENTS IN TEXTBOOKS WITH APPLICATIONS
AND SOFTWARE

2014 2015



Statistical and machine learning
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Non-parametric regression
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THE END OF HISTORY?
2016 2016

I am not a robot…or am I?



3. EVOLUTION OF STATISTICAL 
METHODS

IN ANIMAL BREEDING
AND QUANTITATIVE GENETICS
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Balding et al. (2007)
“Handbook of Statistical Genetics”. Wiley

Chapter 20
D. Gianola

“Inferences from Mixed Models in 
Quantitative Genetics”

Gianola and Rosa (2015)
“One hundred years of statistical developments 

in animal breeding”



Sewall Wright R. A. Fisher J. B. S. Haldane

Jay L. Lush, Iowa State University
(animal breeding)SCIENTIFIC FOUNDATIONS 

OF
ANIMAL (PLANT) BREEDING

FOUNDERS OF MODERN QUANTITATIVE
AND POPULATION GENETICS
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Archaen Galton’s regression; Pearson: density estimation          [Early 20th century]

Pathozoic Fisher’s 1918, Path analysis, “Animal Breeding Plans”  [1918-1945]

Anovian Least-squares, (CO) Variance components: Henderson’s Method 1,  
Selection index                                                       [1936-1943]

Post-anovian Henderson’s 2+3, Rao’s MINQUE and MIVQUE           [1953-1973]

Blupassic Mixed models, BLUP, animal model, multi-traits, random regression          
[1948-2009]

Remlian Maximum likelihood: VCE, ASREML, DMU, WOMBAT    [1971-2009]

Posteriozoic Threshold models, Survival, MCMC                                   [1982-2008]
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HISTORICAL PROGRESSION

Genomacic
QTLs, GWAS, whole-genome prediction, machine learning, networks,
“causal variants”                                                               [2001-present]



TOME 1: FROM FISHER TO HENDERSON
• Fisher’s mean became a mean vector
• Fisher’s additive variance became a covariance matrix
• BLUP and the mixed model equations were developed
• Wright’s NRM matrix found to have an easy inverse
• BLUP extended to cross-sectional, longitudinal and multivariate data
• BLUP even for non-existing individuals…
• Good estimates of dispersion parameters needed! ML and REML (Thompson)
• More efficient production of milk, meat, eggs and fiber!
• No genes, no MAF, no LD, no “causal variants”. No Nature Genetics or NIH, no 

glamour!!



BLUP=Exactly like the Holy Roman Empire (Gelman)

Fixed Random

THE n<<p ERA
(in animal breeding, began in 1948-1973: C. R. HENDERSON)

BLUP=Best linear unbiased predictor

BLUP= Conditional posterior mean in Bayes Gaussian linear hierarchical model

BLUP=Similar to kriging in geostatistics

BLUP=penalized (L2) maximum likelihood

BLUP=special case of RKHS regression
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BAYESIAN INFERENCE AND
THE NEO-BAYES-LAPLACE REVOLUTION
(Savage, James-Stein, Lindley, Box, Zellner…)

Rev. Thomas Bayes

1702 London, England
1761 Tunbridge Wells, Kent, England 

1763. “An essay towards solving a problem in the doctrine of chances”. 
Philosophical Transactions of the Royal Society of London 53, 370-418.

Pierre-Simon Laplace

1749 Beaumont-en-Auge, France
1827 Paris, France 

1774. "Mémoire sur la probabilité des causes par les événements“.
Savants étranges 6, 621-656. Oeuvres 8, 27-65 



Gianola, D., Foulley, J.L. Non-linear prediction of latent genetic liability with 
binary expression: an empirical Bayes approach. in: Proc. 2nd World 

Congr. Genet. Appl. Livest. Prod. VII. ; 1982:293–303.

TOME 2: FROM HENDERSON TO BAYES

Gianola, D., Foulley, J.L. Non-linear prediction of latent genetic liability with binary expression: an 
empirical Bayes approach. in: Proc. 2nd World Congr. Genet. Appl. Livest. Prod. VII. ; 1982: 293–303.

GENOMIC 
SELECTION

PRE-MCMC

MCMC

MCMC WITH MARKER DATA

“Gibbs for pigs”
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Bayesian methods in Genetics: today
-Classification of genotypes
-Molecular evolution
-Linkage mapping
-QTL cartography
-Genetic risk analysis
-Gaussian linear and non-linear models
: cross-sectional+ longitudinal univariate+ multivariate
-Generalized linear models
-Survival analysis
-Thick-tailed processes
-Mixtures
-Semi-parametrics
-Transcriptional analysis
-ABC in population genetics
-Structural equation modeling
-Bayesian proteomics with wavelets
-Bayesian non-parametrics (Dirichlet process priors, RKHS)
-EPITOME: Methods for genomic selection
(the Bayesian Alphabet—A, B, C,C-pi, L,R… and more)
-Bayesian multi-omics (DNA+methylation, gene expression, environmentomics)

RED: animal breeders
made strong contributions



4. BASIC QUANTITATIVE GENETICS:
the additive genetic model

+ +… + = ‘additive genetic value’

Random genotypes (W’s) ; fixed effects of QTL (a’s)   u  is a random “genetic signal”
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THERE IS ALWAYS LINKAGE DISEQUILIBRIUM!
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Effect of an allelic substitution
W(AA)=2
W(Aa)=1
W(aa)=0



25

Epistasis: interaction between genotypes at different loci

Epistasis: substitution effect depends on allelic frequency distribution at other loci
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Genetic variance in two-locus model

Disequilibrium variance
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Equilibrium variance
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Genetic variance in three-locus model
(assuming HW and linkage equilibrium)
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TO FULLY CHARACTERIZE STATISTICAL GENETIC ARCHITECTURE OF
COMPLEX TRAITS, NEED KNOWING MORE THAN NUMBER OF LOCI, 

SUBSTITUTION EFFECTS AND ALLELIC FREQUENCIES .

NEED TO KNOW HIGHLY-DIMENSIONAL GENOTYPE DISTRIBUTIONS!

FOR EXAMPLE

ARGUABLY HIGH LEVEL DISEQUILIBRIUM MAY MATTER



5. DATA TYPICALLY USED AS
INPUTS (COVARIATES) IN 

PREDICTION MODELS
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Primer on genomic data



SNP= DNA sequence variation occurring when a single nucleotide - A, T, C, or G
in the genome differs between members of a species (or between paired chromosomes) 

ABOVE:  two sequenced DNA fragments 
AAGCCTA to AAGCTTA, contain a difference in a single nucleotide. 

we say that there are two alleles : C and T

All you wanted to know about SNPs
but were afraid to ask…

GENOMIC DATA: Single nucleotide polymorphisms
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SEQUENCES FOR THOUSANDS OF ANIMALS AND PLANTS 
(WITHIN SPECIES) AVAILABLE OR COMING SOON!

8.3-fold ave., 28.3 million variants, 1.44 heterozygous sites/kilobase

2014

Schnable P, Ware D, Fulton RS, et al. (22 November 2009). "The B73 Maize Genome: 
Complexity, Diversity, and Dynamics". Science. 326 (5956): 1112–1115.

2,300Mbp 39,656 genes predicted
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MULTI-OMICS OR “OTHER” OMICS
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6. GENOME-ENABLED 
PREDICTION



2007

EXAMPLE 1: MEDICINE
Prediction of clinical outcomes



PROBLEMS?
APART FROM THE ERROR IN GRAPH E, 

MODEL WAS NOT CROSS-VALIDATED



WHOLE-GENOME ASSISTED PREDICTION STARTED IN ANIMAL 
BREEDING.

USE ALL SNP MARKERS IN MODELS PREDICTION OF “BREEDING 
VALUE”

Effect of chromosomal segment
alleles, haplotypes

SNP effects combined
additively

Meuwissen, Hayes and Goddard (Genetics,2001), 
“Genomic selection”

Better terms:
“Genome-enabled selection”
“Genome-assisted selection” 

QUESTIONS: 
ABANDON QTLS, PEDIGREES, KNOWN GENES?

“Whole-genome prediction” (whole or part? Variable selection?)

Prototypical linear regression model (no nuisance parameters)
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Essentials of genome-enabled prediction 
(and selection in breeding)

• Fit (train) some regression model to data set with 
markers and phenotypes

• Estimate marker substitution effects or marked genetic 
signal, or omic-captured signal 

• Predict signal or phenotype in a new sample (testing or 
validation sample) for which input information is available

• Once phenotype (or pseudo-phenotype) is observed, 
asses quality of prediction. For example, calculate 
predictive correlation or mean squared error of prediction 
(choice of metric?)

• Objective: gain reliability over pedigree or covariate-
based prediction. If new sample is of juveniles, plan 
medical strategy or reduce generation interval in 
breeding. Dispense with progeny testing? Reduce 
frequency of phenotyping in some programs?
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EXAMPLE 2: DAIRY CATTLE BREEDING
Prediction of progeny performance

Classical progeny testing scheme



Genome-enabled selection



TWO ISSUES:
1) Generation interval drastically reduced.
2) Genome-enabled predictions (GEBV) may be more accurate than EBV



7. CROSS-VALIDATION (CV)
• Data available (genomic, multiomic, phenotyes)
• Data generated by unknown process
• Split into training (fitting)- testing (predictand) sets
• How to split? Random not always possible…
• Fitting process describes current data (model is always 

wrong). Sample may be idiosyncratic
• Use training process to make statement about yet-to-be 

observed data (testing set)
• Prediction error (conditional and unconditional): point 

estimate is obtained
• Distribution of prediction errors (conditional or 

unconditional): interval estimate. For this, CV must
be replicated or pseudo-replicated
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ILLUSTRATION OF A 4-FOLD CROSS-VALIDATION (red: testing set; white: training set)

Test

Test

Test

Test

Train Train Train

Train Train

Train

Train

Train

Train

Train

Train Train

Important

This is a single-realization from 
the CV distribution.  Repeat many 
times! (data structure issues here)
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CROSS-VALIDATION
seldom done in animal breeding in the pre-genomic era. Often 

absent in GWAS and medical studies)

A. Prediction and goodness of fit are 
different: a model that fits well to training data 
may predict badly. A mechanistically poor 
model can give better predictions that “fancier” 
models
B. Any cross-validation scheme (e.g., k-
folds) has a cross-validation distribution

THIS IS THE DISTRIBUTION THAT MATTERS AND NOT
THAT BASED ON THEORETICAL CONSIDERATIONS

FROM SOME MODEL 



GOODNESS OF FIT (TRAINING= TRN) vs. PREDICTIVE ABILITY (TESTING= TST)

HUMAN STATURE: MAKOWSKY et al. , Plos Genetics 2011
45



CROSS-VALIDATION UNCERTAINTY AND IMPACT OF LAYOUT:
2294 dairy bulls with progeny tests (“TBV”)

(Erbe et al. 2010)

A= pedigree based kinship matrix
G= genomic similarity matrix
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7. METHODS FOR GENOME-
ENABLED PREDICTION ARE 
SOMEWHAT “DIFFERENT”
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Maximum Likelihood (parameters are fixed):
General Linear Model with Known Dispersion 

Structure and rank[X (n x p)]=p

y  NX,V  is unknown

L|V,y  exp − 1
2 y − X′V−1y − X

S|y 
∂ − 1

2 y−X′V−1y−X
∂  X′V−1y − X

X′V−1X

  X′V−1y


  X′V−1X−1X′V−1y

ML estimator

(likelihood)

(score)

Equations satisfying first-order condition

A matrix with marker genotype codes
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Expected information matrix

I  Ey
∂l
∂

∂l
∂

′  −Ey
∂2l
∂∂ ′

X′V−1X In the linear regression model

X′V−1X−1

Variance-covariance matrix of the estimates = inverse of the information matrix:
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0  X′V−1X−X′V−1y; E0|  X′V−1X−X′V−1X

-rank(X)< min(n,p), there is an infinite number of solutions to the ml equations, 
all giving the same likelihood. This is called UNIDENTIFIABILITY

-Technically speaking, the likelihood contains information about at most rank(X)
linear combinations of the regression vector.

WHAT HAPPENS IF n<p  (AS WITH WHOLE-GENOME MARKER MODELS)

MAXIMUM LIKELIHOOD DOES NOT PROVIDE AN ANSWER.
MUST DO SOMETHING ELSE!!!

“generalized inverse”: one of an infinite number
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ANSWER:
• Must reduce size of regression coefficients
• Such that the “effective” number of parameters< n
• It is equivalent to rationing…
• Pizza analogy: there are 10 portions (n=10),

but more and more persons show up. Portion    
size is gradually reduced. 

• Suppose n=1000 Holstein sequences and fit 
sequence-model with 28.4 million variants. Not  
much pizza per variant!
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PENALIZED and BAYESIAN METHODS 
DO THIS!

• The idea of “penalty: typically ad-hoc
• It does not arise “naturally” in classical inference
• It appears “naturally” in Bayesian inference

 L2 penalty: equivalent to
Gaussian prior

 L1 penalty: equivalent to double
exponential prior

 Penalties on covariance matrices   
equivalent to priors (e.g., inverse
Wishart)

Bayesian methods lend themselves for predictive inference.
The prior becomes part of a prediction machine which can
ALWAYS be calibrated in some manner [contrary to inference] 52



y  X  e; e~N0, Ie
2

SSR  y − X′y − X

L|y  exp − y − X′y − X
2e

2

Penalty  exp − 
′

22

Penalized likelihood  exp − y − X′y − X
2e

2 exp − 
′

22

Penalized sum of squares  −2 logPenalized likelihood


y − X′y − X

2e
2   ′

22

The concept of penalized likelihood
(example: ridge regression viewed from this perspective)
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∂ Penalized sum of squares
∂  −X ′ y − X

e
2  

2

 Set to 0

X ′X  I e
2

2

  X ′y


  X ′X  I−1X ′y;   e

2

2

Ridge regression estimator obtained by minimizing penalized SS over β

Verify minimum:

∂2 Penalized sum of squares

∂∂ ′
 X ′X

e
2  I


2  X ′X  I e

2


2 e

2

Positive-definite minimum 54



The concept of penalized likelihood
(example in the mixed linear model)

y X  Zu  e
y|, u, R~NX  Zu, R
u~N0, G

py|,u,R  1
2

N
2 |R|

1
2

exp − 1
2 y − X − Zu′R−1y − X − Zu

pu|G  1
2

q
2 |G|

1
2

exp − 1
2 u′G−1u
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Assuming known variance components, the log of the joint density of the data and
random effects is termed “penalized likelihood

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z  G−1



u


X′R−1y
Z′R−1y

l, u|y, R, G  K − 1
2 y − X − Zu′R−1y − X − Zu − 1

2 u′G−1u

∂l,u|y,R,G
∂  X′R−1y − X − Zu

∂l,u|y,R,G
∂u  Z′R−1y − X − Zu − G−1u

Setting the derivatives to 0 yields

The solution to these equations produces the “maximum penalized 
likelihood” estimates of β and u
These solutions are also the BLUE(β) and BLUP(u)

−2l,u|y,R,G  K  y − X − Zu′y − X − Zu  u ′G−1u Penalized SS
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8. COMPLICATIONS: EPISTASIS

Schaeffer (2006, Journal of Animal Breeding and Genetics),
Wrote:

YES, IT WOULD BE DIFFICULT!
SEE NEXT… 57



Dealing with epistatic interactions 
and non-linearities

gene x gene
gene x gene x gene

gene x gene x gene x gene
………….



IS EPISTASIS AN ANOMALY?
jJe suis
epistasis



RANDOM EFFECTS MODELS 
FOR ASSESSING EPISTASIS REST ON:

Cockerham (1954) and  Kempthorne (1954)

--Orthogonal partition of genetic variance into additive, dominance
additive x additive, etc. ONLY if

No selection                                        
No inbreeding                                                   
No assortative mating
No mutation
No migration
No linkage, Linkage equilibrium 

ALL 
ASSUMPTIONS
VIOLATED!

Just consider
Linkage disequilibrium
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A prevailing view, and for good reasons 
(Hill et al., 2008; Crow, 2010; Hill, 2010)

• Fisher’s theorem of natural selection 
• Interactions are second-order effects; 

likely tiny and hard to detect
• Epistasis probably arises with genes of 

large effects, unlikely to be observed in 
outbred populations

• Epistatic systems generate additive 
variance and “release” it, so why worry?
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CLOSE ENCOUNTERS OF THE PREHISTORIC KIND

GENOMICS AND
COMPLEX BIOLOGY

(networks)

THE ADDITIVE 
GENETIC MODEL
(linear regressions) 

Homo
sapiens

Neanderthal

YOU ARE 
WRONG! I AM USEFUL 

AND YOUR MATE 
KNOWS IT!



https://dsgweb.wustl.edu/Mission.html

”We may have to confront the complexity of our networks and systems head on, from the 
beginning, or we may fail at both goals of discovery and characterization. One thing is 
clear. The current paradigm, as successful as it now is, will reach its limit all too 
quickly. We need to begin thinking about the problems of the future, not the ones of the 
present.”



• If everything behaves as additive, can 
additive models allow us to learn about 
“genetic architecture”?

• In areas where phenotypic prediction is 
crucial (medicine, precision mating) can 
exploting interaction have added value?

• Is so, should we consider enriching our 
battery of tricks?

A less popular view
(Gianola and a few others)
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The era of machine
learning and artificial

intelligence

(largely non-parametric)



Distinctive aspects of non-parametric 
fitting

• Investigate patterns free of strictures imposed by 
parametric models

• Regression coefficients appear but (typically) do not 
have an obvious interpretation

• Often: very good predictive performance in cross-
validation

• Tuning methods and algorithms (maximization, 
MCMC) similar to those of parametric methods

• Often produce surprising results
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2013



GUYS?
READ THE ANIMAL+ PLANT 

BREEDING LITERATURE!



A VIEW OF LINEAR MODELS
(as employed in q. genetics)

Mathematically, can be viewed as a “local” approximation of a complex process

Linear approximation

Quadratic approximation

nth order approximation FELDMAN and LEWONTIN (1975)
CHEVALET (1994)
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Pattern 
recognition

Data miningNeural networks
Universal

approximators

Machine
learning

Kernel
methods

Sampling
methods

Cross-validation
designs

Bayesian 
networks

Non-parametric
prediction

Ensemble
Methods:
boosting

Ensemble
Methods:
bagging

Support vector
machines

Random forest
algorithms

2011

2000

2011

2006
2008

1991
1993
“Gibbs
for pigs”

2014 20062011 2010

BLUP is
a linear UA

2009



ZAHA HADID

SANTIAGO CALATRAVA
FRANK GHERY

RAFAEL VIÑOLY

WILL WE EVER GET THE ARCHITECTURE OF COMPLEX TRAITS RIGHT?
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SORENSEN AND de los CAMPOS (2011) WROTE THE FOLLOWING
(J. Animal Breeding and Genetics, 2017)

THIS WILL BE THE VIEW ADVANCED IN THIS COURSE!!


